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SECTION I

INTRODUCTION

The computation of transonic flow fields by means of

finite difference methods has reached a high degree of

sophistication. One of the most successful approaches

(that of Jameson, Ref. 1) alternates between a Poisson solver

and an iteration process patterned after that of Murman and

Cole (Ref. 2, 3). The Poisson solver can hardly be improved

by the finite element concept, but there is a chance that the

task performed by the Murman Cole iteration can be carried

out more efficiently. The present report does not claim to

have achieved this goal. It asks a preliminary question:

which special measures are needed in order to obtain such a

finite element formulation. The approach taken is primarily

theoretical. The procedures which emerge are more complicated

than those of Murman and Cole. Whether simplifications are

possible remains to be seen. The author considers it

preferable first to study what should be done in principle

and to make simplifications and compromises only after the

basic procedure has been established, although a less

systematic approach may sometimes be equally successful.

There is no doubt that a finite element approach is

applicable in subsonic problems, for the computation can be

based on an extremum principle. Such a secure basis does

not exist in the supersonic region, but the study of examples

shows that stable methods using a finite element concept

exist (Ref. 4). Two approaches are possible: one can either

treat the subsonic and the supersonic regions separately and

then impose matching conditions, or one can try to develop

a procedure in which the subsonic and the supersonic regions

are treated simultaneously, although not exactly in the same

manner. Even in such an approach the transition from the

1



subsonic to the supersonic region and back requires special

measures. In finite difference form this is the approach
of Murman and Cole. In the present report the analogous

finite element version will be studied. Of particular

importance are the conditions that must be imposed at the

shock and at the sonic line. The sonic operator and the

shock operator of the Murman-Cole procedure can be inter-

preted as the finite difference realization of the ideas

that will be developed.
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SECTION I

CONDITION AT THE SONIC LINE OBTAINED
BY A SEMI-DISCRETIZATION

In Reference 5 the author has shown that a special

condition must be introduced at the sonic line. We ask

here how this condition expresses itself in a finite element

setting. Reference 5 is motivated by the observation that

the boundary conditions for the flow in a channel are quite

different in a purely supersonic and in a purely subsonic

flow. In a supersonic flow one prescribes the full velocity

vector in the entrance cross section. In a subsonic flow

one has conditions in the entrance and in the exit cross

section. If one has a transition from a subsonic to super-

sonic flow, one has subsonic boundary conditions in the

entrance and no boundary conditions in the exit cross section.

In some manner, one must have extra conditions within the

flow field which are substitutes for the conditions which would

be given in the entrance cross section if the flow were entirely

supersonic. The nature of these conditions is recognized if

one treats the problem by means of a semidiscretization; the

differential operator for the direction normal to the stream-

lines is discretized, but the derivatives in the streamwise

direction are retained. One obtains a system of ordinary

differential equations. To be specific, let us assume that

the flow field is described by the values of the potential

at a discrete set of streamlines. (Mostly we think of the

simplified form of the potential equation then the stream-

lines are lines y = const. For the full potential equation,

one will introduce a linearization and the streamlines are

those of the preceding iteration step.) One then obtains a

system of ordinary differential equations for the potential

J• along these selected streamlines. One finds that singular

points arise where these lines intersect the sonic line.

3
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At these singular points all but one of the solutions of the

homogeneous system are regular. The singularity of this

exceptional solution is compatible with a weak solution of

the system of equations, but it is not admissible because

then the streamwise component of the velocity gradient becomes

infinite. The missing condition for the system of differential

equations is obtained by the requirement that such behavior

of the solution is excluded. In mathematical terms one would

say, that at the sonic line the differential equation must be

satisfied in the strong sense. For the nonlinearized

differential equation this amounts to the requirement that the

second derivative normal to the streamline of the potential

be zero. This is the condition imposed by Murman. For the

linearized equation which one must solve when one applies a

Newton Raphson procedure, the condition is slightly more

complicated. It is best derived directly from the linearized

differential equation. The following analysis differs

somewhat from that of Reference 5 because it refers to a

partial differential equation which resembles more closely

the one which arises by a linearization of the original non-

linear problem.

We shall deal here with either bilinear or bicubic

shape functions in a rectangular grid system. For functions

of this character one can carry out the discretization for

the direction normal to the streamlines and for the streamline

direction separately. Then one obtains as an intermediate

form the system of ordinary differential equations mentioned

above. In practice this intermediate step will be omitted,

but it is worthwhile to discuss it because it suggests the

form of the final numerical formulation. The description

of the practical procedure which will be given in Section III

is selfcontained. A reader primarily interested in this

aspect may pass over the present discussions, whose main

purpose is to provide a motivation.

4



We start from the simplified equation for transonic

flow

-y 4)xxx + = = 0

Assume that one has an approximation

O(x,y) = F(x,y)

and that one tries to obtain corrections by means of a Newton

Raphson procedure. Then one sets

O(x,y) = F(x,y) + (x,y)

and obtains by a linearization

-(y+l) [Fx + F x X ] y -(y+)FxFxx + F =0

Set

G(x,y) = -(y+1)F x

and h(x,y) -(y+l) F F + F

Then one has

G(x,Y)xxx + Gx(X,y)qx + yy + h(x,y) = 0 (1)

In Reference 5 the term containinq x has been omitted.jx
This changes the details of the argument, but not the overall

conclusions. Now a semidiscretization is carried out with

respect to the y direction, either by a finite element

procedure or by a finite difference approximation and one

arrives at a system

A(x) " + A'(x)p' + Bp + f(x) = 0 (2)

Primes denote differentiation with respect to the independent

variable x; p and f are x dependent vectors. The components

of ip are the parameters which serve to describe the potential

along lines x = const. (If one chooses, for instance,

to discretize by means of a finite difference procedure,

5



then the components of O(x) are given by the values of t(x,y)
for the pivotal lines y = const chosen for the discretization.
In this case the components of f are the values of h(x,y)
along those lines.) If the potential along a line x = const
is described by n parameters, then * and f have n components.
A and B are x dependent matrices. (In the case of a finite
difference approximation A is a diagonal matrix with diagonal
element G(xyn). B is a tri-diagonal matrix (with elements

2/h 2/h and 1/h2 ), it arises from the finite

difference form of yy

Incidentally, Eq. (1) can be obtained from a variational
formulation, namely

6ff(G(x,y) x2 + *Y 2 - h(x,y)f) dxdy = 0

(with suitable boundary conditions). The differential equation
from which one starts in Ref. 5 does not possess this
property. The system Eq. (2) is now written as a first order

system.
A ' + B + f :0

+ + =(3)

where

= ~ .,~ =[!n_ _0 = B vO (4)

: ' f 0 A : B At I '

The system Eq. (3) can obviously be solved for T' if the
determinant IAI = JAI is different from zero. Sinqular
points are encountered if it vanishes. To study this case
consider the eigenvalue problem

A; u - Xu= 0 (5)

or in more detail with u = [u]

U 2

6



u I - 0u=0

Au 2 - Xu2 = 0

It has n trivial eigensolutions

= +1, U2 = 0, u1 arbitrary

Another set of eigensolutions has

uI  
0

while X and u2 satisfy

Au -Au = 0
2 A 2 O

The further development is best carried out on the basis of

the original eigenvalue problem, Eq. (5). We characterize

the eigenvectors and eigenfunctions by subscripts and consider

in addition the adjoint equation

- -n 0(6)
n nfn

J A - XnVT = 0 (7)

In this notation, the vectors are regarded as n by 1 matrices.

All quantities occurring in these equations depend upon the

independent variable x. The determinant of the matrix

vanishes at those values of x where one of the eigenvalues

vanishes. Let the values of x where the eigenvalue Ak(x)kk
vanishes be denoted by x . One has (for all values of x)

the orthonormality conditions

V Z Uk kk8

Then it follows that

VT Au X A 
(9Z k k k(9)

We represent W' in the form

7



k U (10)

Then one finds, using Eqs. (8) and (9)

C k (oP + (11)
c k  X _ k

At a point x = xm, where A vanishes, one obtains a finite

value of T' only if

vT (Bip+f) = (12m (12)

The value of it'(xm) is determined provided that Eq. (12)

which restrict the choice of T is satisfied, although Eq. (11)

gives an undetermined expression for c (xm). Whether or notm
this value of T' is needed depends upon the method used for

solving the systems Eq. (2) or Eq. (3). In the usual predictor

corrector methods one evaluates the derivatives at the chosen

grid points, then T' must be evaluated, in a finite element

approach the derivatives do not appear explicitly, and one

can forgo the computation.

The derivative i' at a point x = xm can be computed in

the following manner. We define the auxiliary quantity

S VT~ (B9p+f)u

Then from Eq. (10)

, + Cm~m (14)

One has, because of Eq. (8)

vT p' 0m

For x x m one can compute i' by solving the equation

(A+otumvT)*' = -(B*+f) (15)

[,M ,(A+tauMVr (BiP f)



provided that Eq. (12) is satisfied. That the expression

Eq. (15) is correct is seen because the matrix (A + au v ) 

has the same eigenvectors as A and also the same eigenvalues
except for k = m; there one has the eigenvalue X + a. The

m
right hand side of Eq. (15) is therefore given by

"T ( -+- T -- - I

E Vk (i'Pf vr (B p+f)
ktm Xk Uk m+( Um

The second term vanishes because of Eq. (12). Now we must
determine cm in Eq. (14). One obtains, by applying L'Hospital's

rule to Eq. (11)

(dVT /dx)(B)+?) + T ((dB/dx) + (d?/dx)) + VT B(d /dx)C = _ mm (16m dmd (16)
dX Idx
M

To compute the quantities occurring in this expression we

differentiate Eq. (7):
dv+ dvT -A dXm

dx Zm dVmx dx m i

The solvability condition for this inhomogeneous system is

T dA dXm -

m (-x - - U rM  0

Hence

d - Urn (17)

Furthermore, since Xm(X m ) = 0

dvT - . dXm -T dA r)d x A=-v M(U- - --

Hence, employing an argument similar to the one used above

dT J - dX" VTdA d(18)
dx -vJ( - d-) (A+uVT)-' + cv(18)

Here c is arbitrary (ultimately determined by a normalization

condition). The constant 6 vanishes upon substitution of

Eq. (18) into Eq. (16), because of Eq. (12). Multiplying

Eq. (16) by dm /dx and substituting Eq. (14) one finds

9



Cm( T dA- -T (dA -T dA - -B*f
m m Un m dx m + m))(A --T

+ T (dB + df) - T B(A+a5- T (B+f) + C T B5m  0
m dx+ " m M ) mm m

Hence
dA l (dA -(Td 5m + T -

Cm [ T (+ B)5- {vT (- (v+ dx B)(A+a5Um) '(BP+f)
m dx 1 -dA TX MA~+

-df (18)

T (dB + Lf)}
m dx dx

This formula expresses cm in terms of p and the known

quantities A, B, dA/dx, dB/dx, T and df/dx. As was mentioned

above, T' is not always needed.

To impose the condition that the solution of the system

is free of singular points, one must first determine the

values of xk for which Xk = 0. For these points one must

evaluate Uk and Vk and, for methods in which T' is needed, a

number of derivatives of known quantities.

For an illustration, consider the second order equation

x4" .- ' -d@ + f : 0

With

one obtains the equivalent first order system

0' 0'(20)

+ + = 0

" 2 " 2

10



The associated eigenvalue problem, Eq. (5), is given by

The eigenvalues and eigenfunctions are found by inspection

and 2-1 2.1

poin) ~ = X; [:1 U
Asingular point occurs at x = 0, (A 2 (x) is zero at this

poit).The regularity condition Eq. (12) gives

tO 1] P2 +~ fI =0

0 '(0) + f(0)

This result can be found directly ftorn Eq. (19). The

derivative 2 1(0) computed from Eq. (20),

-x 42- - + f = 0

is undetermined. The desired result is obtained by a

differentiation with respect to x

'P2(0) =(/2)(*i' (0) + f'(0)) (22)



moreover

( = 2(0)

The essence 3f a numerical procedure which computes the

solution in an interval -a < x < 0, with 0(-a) prescribed

is already seen if one traverses this interval in one step.
One has in the simplest difference formulation of Eq. (19) ;

a 0(-a)-2-(-a/2)+ -(0) 0(0)- (-a) _ 0(-a/2) + f(-a/2) = 0
2 (a/2)2 a (23)

The value of f(-a) is given by the boundary conditions. In

addition one has the regularity condition for x =0.

It is consistent, if one expresses the value of 4'(0) by a

finite difference approximation.

00(0) = 3(0)-4_(-a/2)+(-a)
a (24)

The values of 0(-a/2), 0(0), and 0'(0) can then be computed

from Eqs. (23), (24) and (21).

In the first step of the continuation to positive values

of x a formula corresponding to Eq. (24) is used
i@'() = 30(0)+44ja/2)- (a)

'(0) a

The left side is qiven by Eq. (24). In addition, one has

from the difference approximation of the differential equation

for the point x = a/2

a (0)-2-(a/2)+ (a) _ 0(a)- (0) _ (a/2)+f(a/2) = 0
2 (a/2)2 a

The last two equations are used to compute f(a/2) and 0(a).

From there on the values of € can be computed in sequence.

The procedure is even simpler if the qrid points straddle

the point x = 0. Assume that 0(-3/4a) is prescribed. Then

one has, for the first inner point

12



a 0{3a/4)-20(-a/4)+O(a/4) 0 (a/4 -0(-3a/4) - (-a/4)+f(-a/4) - 0
if (a/2) a

In the regularity condition, derived from Eq. (19), 00is

expressed either by linear interpolation

o(0) = (1/2)[O(-a/4)+O(+a/4)]

or by quadratic interpolation

()= -(I/8)0(-3a/4)+(3/8)0(a/4)+(3/4) (-a/4)

Moreover

One thus has two equation which allow one to compute

f(-a/4) and 0(+a/4). For a continuation to further positive

values of x, one uses a marching procedure. The value of

0(3a/4) is, for instance, obtained in terms of j,(-a/4) and

f(+a/4), from the difference equation for the point x = a/4.

The situation is similar if one treats Eq. (20) instead

of Eq. (19) by a difference formulation. Taking as grid points

x = -a, x = -a/2 and x = 0, one obtains as equations for the

middle of the intervals -a < x < -a/2 and -a/2 < x < 0

a/2 -2 - 0

3a 1P2(-a/2)-*2(-a) *,1(-a/2)+*p1 (-a) Yp2 -a/2)+" 2(-a) 3a(. ~ 0
Ta/2 z 2 + 2f4

a *2(0)-J2(a/2) *j(0)"j 1(a/2) Y2()+ip 2 -a/2) + f(_ a)=
a/2 -2 

2 2

The value of *1 1(-a) is given as boundary condition. In

addition, one has the regularity condition (first of Eqs. (21)).

One thus has 6 equations for 6 unknowns (1k1 and *2 at each

*1 13



of the points x = -a, x = -a/2 and x = 0). For the continuation

to the right one uses a marching procedure which considers

one interval at a time.

No essential differences are encountered, if one obtains

discretized equations by a finite element procedure. If

one takes, for instance, third degree shape functions, then

one characterizes the solution by the parameters f(-a),

(p'(-a), 4(0), 4''(0), etc. For each interval one has two

weight functions (because one has two parameters for each

grid point). In addition, 4(-a) is assigned and one has

the regularity condition (second of Eqs. (21)). This suffices

to compute the solution for x < 0.

Eq. (22) for the derivative at x = 0 would be needed

if one uses formulae analogous to those occurring in the usual

integration techniques for ordinary differential equations.

Using a very simply integration procedure and traversing the

interval -a < x < 0 in two steps one has

2 (-a/2 )-Y2(-a) = (a/2)(1/2) (42, (-a/2 )+ 2 '(-a))
= (a/2)(1/2)( j'(-a/2)+P'(-a))

Y20) - 2-a/2)- (a/2)(1/2)(2'(O)+2'(-a/2))

l(0) - jp,(-a/2) =(a/2)(]/2)( i'(0)+ ](-a/2))

At the points -a and -a/2, i 1' and F2' are expressed in terms

of 11 and 12 by means of the differential equations (20). At

x = 0, these quantities are expressed by Eqs. (22). They are

derived from Eq. (20). Thus, one has four relations for six

quantities ( i and '2 at three points), ip1(-a) is given by the
boundary condition. In addition, one has the regularity

condition (21).

Next, we consider an example which arises from a partial

differential equation. Consider

14



(y-ax)) xx-a'(x)ox+yy = 0 (25)

For y > a(x) the problem is elliptic, for y < a(x) it is

hyperbolic. The line y = a(x) will be called the parabolic line.

We choose as boundary condition, = 0 for y = 0, and y = 1.

Let a(x) be a function which changes in the region under

consideration monotonically from some value less than zero

to a value exceeding 1. Then one has values of x at the left

where the problem is elliptic and at the right where it is

hyperbolic. In the intermediate region one finds a parabolic

line which goes from the lower left to the upper right. Let

n
Yn = -
n N

(n < N). We approximate 4(x,y) by means of the values which

it assumes along the "pivotal" lines, y = yn

¢.(x) = (xy.)

Taking a finite difference approximation for one then
yy'

obtains the system of ordinary differential equations

a(x))" - a(x),!1  + N2( x) - 20(X) + 0 (26

-n (26)

n = 1, 2 ... N- 1

The matrix A introduced in Eq. (1) is a diagonal matrix with

elements y - a(x), and the augmented matrix T is also a

diagonal matrix with additional elements 1. Eiqenvalues 0

occur, obviously, at values of x, to be denoted by xn , where

a(xn) . Yn

These are the intersection of the pivotal lines with the

parabolic line. It is obvious from the form of the differential

j equations, that these are the singular points. Let
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0

en nth component

, 

th
be the unit vector in the direction of the n component of
the space of the vectors *. One has as eigenvectors of A, aside
from those with eiaenvalue 1 which are not of interest

rr

wih= [] Vm = [e mM .
with eigenvalues X (x) = y a(x). In this case one has for

the matrix B

-2 1

SN-1-21

1 -2

The regularity condition (12) at a singular point x x i

gives

2 JL-a (Xm)1 2' + Be1

Hence

a,(xm) 2,m + N 2 [Plmil(Xm) - 2fl,m(Xm) + =~m+x] 0 (27)

This condition can also be found by inspection of Eq. (26).

One needs 2n boundary conditions for the system of ordinary

differential equations Eq. (26). n conditions are given by

the values of 4@(x£,Yn) , where x is the value of x at the

left end of the region under consideration, n further
conditions are obtained from the regularity conditions Eq. 127).
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The form of the regularity conditions is more complicated

if one applies a different form of discretization, although

it is based on the same idea. One might choose a finite
element approximation for the y direction, or (even though

this may not be practical) a representation in terms of a

finite Fourier analysis based on the values of n (see Ref. 5)

In those cases, the matrix A does not have diagonal form, and

the determination of the eigenvalues and eigenvectors vn is

more difficult. In Ref. 5 it is shown by an example that for

large values of N (that is if the pivotal lines y = const

lie close together) the functions of y represented by the

eigenvectors of A approach 6 functions. Thus, one obtains in

essence the same eigenfunctions as in a finite difference

discretization. They are used again to derive regularity

conditions for the points x = xn

The system of ordinary differential equations so

obtained is now treated by a discretization with respect

to x by the same techniques described above for a simpler

case.

The weight functions applied in the x discretization

combined with the weight functions for the y discretization

give two dimensional weight functions. Figures 1 and 2

show the boundaries of the regions to which the weights are

applied. For constant weights the boundaries of adjacent

areas coincide. If one works with nonconstant weights then

there is in general an overlap of the weight areas, but the

general arrangement is the same.

Figure 1 refers to bilinear shape functions which are

characterized by the values of at the corners of the

quadrangular elements. To each of the inner lines y = const

which form an element boundary there belongs one differential

equation and for each of these lines one needs one regularity

condition. In the supersonic region it is probably necessary

for reasons of stability to shift the weight areas downstream.

This has not been indicated in the figure. Each row of

[1
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Figure 2. Weight Areas for Bi-Cubic Shape
Functions, Element Boundaries
and Sonic Line.
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weight areas correspond to one differential equation. (The

differential equations will, of course, contain terms which

originate from adjacent lines y = const.) For each of the

unknowns, that is for each row of weight areas one has one

regularity condition. For Eq. (1) it is the requirement

that Gxox + yy + h(xy)= 0 at the parabolic line.

For bicubic elements the same situation is shown in

Fig. 2. The lengths of the sides of the quadrangles is

taken twice those of the bilinear elements. Bicubic elements

can be characterized by the values of 4, 0 X, y , and 0xy at

each element corner. For each inner corner one therefore

has four weight areas. At the upper and lower boundaries

the values of 4 are known, in addition one knows at the left

boundary the values of 4y and at the upper and lower boundaries
the values of 0x* One has therefore two weiqht areas for each

element corner at the boundary of the reqion. Aqain, each

row of weight areas corresponds to one differential equation.

And for each such row one obtains from the system of

ordinary differential equation one regularity condition.

In the frcr derived above these conditions are inconvenient.

They require that one determine the values of xn (those values

of x where the eigenvalues X(x) vanish), and the eigenfunction

vn of the adjoint operator T. The exact form of these conditions

depends upon the chosen discretization procedure. These

conditions express in discretized form the fact that (for

the present example) -Gxo x + yy + h(x,y) = 0 at the parabolic

line. The procedure derived above is one possible form which it

can be expressed. It is simpler to introduce this requirement

directly. Details of such a procedure are shown in the next

section.

If one wants to insure overall conservation of mass,

then one must use constants as weight functions and cover the

entire region of integration with weight areas, neither gaps

nor overlap are permitted. Usually, conservation of mass is

needed only for shocks.
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In Ref. 5 the question has been raised of what happens

if lines x = const intersect certain characteristics more

than once. For a more complicated partial differential

equation this can easily happen in the vicinity of the parabolic

line, where the two families of characteristics have a

common tangent. If one uses in such a case the semidiscretiza-

tion technique described above, then one obtains, again, a
system of differential equations with singular points, but

these singular points lie in the supersonic region. The

typical phenomena associated with the parabolic line are
postponed by some kind of a sweep effect introduced by the

orientation of the coordinate system. This approach is

questionable because one can find examples in which it seems

to give solutions to boundary value problems which are not

well posed.

The question whether it is necessary to choose the

element boundaries so that this phenomenon cannot occur, or

whether it suffices if one chooses the boundaries of the

weight areas so that the regions of dependence are properly

taken into account in the weighting of the residuals is left

open.
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SECTION III

DIRECT TREATMENT OF THE CONDITIONS V
FOR THE SONIC LINE

The discussion in Section II started from the differential

equation (1) obtained by linearization of the transonic version

of the potential equation

G(xy)x + G (x,y)4 x + 4y + h(h,y) = 0

A discretization is carried out by introducing a rectangular

mesh, expressing 4 by either bilinear or bicubic shape
functions and by applying weights (say constant weights)

according to the patterns shown in Figures I and 2, respectively

for bilinear and bicubic shape functions. Along the parabolic

line, that is along the line where G(x,y) = 0, the differential

equation yields the relation

Gx0 + y + h(x,y) = 0 (28)

Eq. (28) will be used to derive further equations in addition

to those obtained by weighting of the residual. One can assume
that the weight areas shown in Figures 1 or 2 arise in two

steps by carrying out a discretization in the y-direction first

and in the x-direction afterwards. In the first step one

obtains a system of ordinary differential equations, one for

each row of weight areas. For each differential equation and

therefore also for each row of weight areas one needs one

additional condition. These are obtained from Eq. (28). These

conditions are written in the form

(29)
f(G xOx + y + h(x,y))ds = 0

where the integrals are formed over the segments of the

parabolic line which extend over the width of the rows of

weight areas. This provides as many conditions as there are

differential equations. The discussions of Section II have

21
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the purpose of showing that these conditions arise naturally
from the system of differential equations obtained by the

y-discretization. Proceeding in this manner, one obtains

the system symbolized for bilinear shape functions by

Fig. 3. The shape functions are determined by the values of

at the corners of the quadrangles. These values have been

denoted by %j,k where j is the subscript for the element

boundaries x = const, and k for the element boundaries y =

const. The values of %jk for constant j (that is the values

of 4 along the jth line x = const) are combined into a vector

kj. Part of the matrix shown in Fig. 3 is block tridiagonal,
J

the blocks are square with dimensions determined by the

dimension of the vector 0. The first row contains only two

blocks because at the entrance cross section the vector ip is

given by the boundary conditions, its contribution to the

system of equations appears in the inhomogeneous part. The

last row of the square blocks contains three because the

vector 0 in the exit cross section is unknown. The last row

consists of single equations. They arise from the regularity

conditions Eq. (28). The segment of the sonic line which lies

within one row of weight areas may intersect more than one

weight area. Accordingly, the conditions expressed by Eq.

(28) will give relations between a number of vectors 1j, but

usually only a very small number of components of these

vectors will appear.

The sparsity of this matrix can be taken into account

fairly easily. In principle, one eliminates the vectors j

in the sequence given by their subscripts. The elimination

includes, of course, the equations obtained from the

reqularity conditions Eq. (28). In this process there comes a

points where some equations obtained from the regularity

conditions contain after the eliminations only components of

F the first of the remaining vectors ij. It is then possible
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to express some of the components of this vector in terms of

the other components. While in the initial elimination process

one has to solve, in each step, systems of equations whose size

is determined by the dimension of *j, one performs from

this point on this task in two steps; in the first one, some

of the components of the vector *j are expressed in terms

of the others, in the second one, one eliminates the remaining

components from the system. After all regularity conditions

have been taken into account in this manner, one arrives at

a system in which one can compute the remaining vectors pj

directly in sequence. This means that one carries out a

marching procedure.
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SECTION IV

TRANSITION FROM A SUPERSONIC TO A
SUBSONIC FLOW

For a first orientation we consider , again, the ordinary

differential equation (19)

-x¢" -4 -* = 0

or rather

X0" + 0' -0 = 0 (30)

and with a slight generalization

a(x) " + a'(x)0' -# = 0, a(0) = 0, a'(x)>0 for x>0 (30a)

because it is natural to make the transition from the

oscillatory type of the particular solutions (which is

analogous to a supersonic flow) to the nearly monotonic type

(analogous to subsonic flows) as one proceeds in the positive

x direction from a negative to a positive value. The left

end of the region in which the solution is to be found is
taken at a negative value of x. There one prescribes the

values of 4 and 4', in analogy to boundary conditions for

supersonic problems. The right end of the region is taken

at some positive value of x, and in accordance with boundary

conditions for elliptic problems one prescribes only the value

of 0 (or 4'). While we had too few boundary conditions in the

discussions of Section II (1 instead of 2), we have now too

many (3 instead of 2). The differential equation has a singular

point at x = 0. We found in Section II, that for the transition

from the "elliptic" to the "hyperbolic" type the missing

condition is provided by postulating regularity of the solution

at x = 0. Under the present condition regularity cannot be

achieved because for negative values of x the solution is

25
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completely determined by the initial conditions at the left

end of the interval. We ask whether one can satisfy the

boundary conditions at the right end, if at x = 0 one satisfies

the differential equations only in the weak sense.

In Eq. (30a) the coefficient a(x) is regular and has

a zero of the first order at x = 0. Particular solutions of

Eq. (30a) can be written in the following manner

¢I P1 (x) (31)

and

2= lglxJP(x) + cxP 2 (x) (32)

where Pl(x) and P2 (x) are power series in x which have 1 as

constant term, and c is a suitable constant. Incidentally,

Eq. (30) is solved by

S 0 oix ) x > 0Z 0( 1X11 )  x<O0

where Z0 is a linear combination of the Bessel functions

J0 and N0. The general solution is

O(x) = c1+¢1(x) + c2+¢2 (x) , x > 0 (33)

Ox) = c4i1(x) + c24 2(x) x < 0
+ +Cl c2

c+ , c2 , c1  , c2  are constants. In the region x < 0 the
solution and therefore also c1 - and c2-  are determined by

the conditions prescribed at the left end of the interval.

Eq. (30a) can be written as

d

Then by integrating from x = -c1 to x = +e2 (C1 > 0, C2 > 0)
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tC

: €2

a(2- a(-l)¢'(E1) + ,,f ¢(x)dx u 0
-Cl

(34)

The integral vanishes in the limit e1 - 0, C2  0, if one

expresses 0 by Eqs. (33), (31) and (32).

To evaluate the first two terms we form

= 1 '(x) + C24 1 + log x P' + c 2  cXP 2' F

Then, since a(O) = 0, and since PI(0) 1

lim (a(C)¢'(e)) = c2± a'(O)
C-SO

Therefore, from Eq. (34)
+

C2 = C2
while cl+ remains undetermined.

The requirement that at x =0 the differential equation

be satisfied only in the weak sense introduces an indeterminacy

which makes it possible to satisfy the boundary condition

prescribed at the right end of the interval.

The numerical procedure is quite clear if one treats

the differential equation by some standard numerical approach

for the solution of ordinary differential equations. For

negative values of x, one has an initial value problem which

is solved up to some negative value of x close to zero. In

the vicinity of x = 0 one computes two linearly independent

particular solutions for 4 by means of their development

and determines the values of c1  and c2 by matching at some

negative value of x with the solution obtained by numerical

integration. For positive values of x, one starts from x = 0,

setting C2+ = C2 and leaving cl arbitrary; c1 is determined

by the boundary conditions at the right end.

In studying which form the procedure assumes if the

differential equations are solved by a finite element approach,
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let us assume that the elements straddle the point x = 0.

Choosing the weight regions for x < 0 in a manner suitable

for hyperbolic problems and for x > 0 in a manner suitable

for elliptic problems, the number of equations exceeds the

number of unknowns by one (Fig. 4a). The weighting of

residuals is a finite dimensional approximation to the concept

of weak solutions, the present procedure is basically in

conformance with the concept developed above, but it gives

too many conditions. This is remedied by omitting the weight

region which covers the first finite element boundary at a

positive value of x and by extending the preceding weight

area so that it covers this boundary (Fig. 4b). This treat-

ment of the vicinity of x = 0 is the analogue to Murman's

shock operator.

The linearized form of the transonic equation Eq. (1)

which served as basis for the discussions carried out so far,

is complicated because the function G in Eq. (1) is discon-

tinuous at the shock location. For a first orientation we

therefore consider the nonlinearized transonic equation
t+ 

= 0

Fig. 5 show the choice the weight areas for such a case. V
For bilinear elements one has delta function residuals at

the element boundaries. The weight areas must overlap the

lines at which delta functions occur. In the supersonic region

one best uses an infinitesimal overlap at the upstream end

of the elements, but not at the downstream end. In the

subsonic region, the weight areas are chosen symmetric (in

the x and in the y directions) with respect to the element

boundaries. In elements which contain the shock, the weight

areas overlap the downstream as well as the upstream

boundary. The first weight areas of subsonic type start at

Jthe downstream boundary of the weight area pertaining to the

shock. In the shock weight areas the weight is taken constant

to guarantee conservation of mass.
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Figure 4a. Weight Areas for an Ordinary Differential

Chosen According to the Type (Oscillatory
or Nonoscillatory) of Particular Solutions
(More Equations than Unknowns).
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Figure 4b. Modification of Figure 4a in which one
Weight Area is Eliminated.

l~~v ,, l l'--i r -i r'-

II~ ~ 3 III L

Figure 5. Weight Areas for the Transition From
Supersonic to Subsonic Velocities by
Means of a Shock.
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In examining whether mass is conserved through the

shock, one is hampered by the fact that shape functions

which are cutomarily applied are not suited to express the

sudden change of velocity which occurs in a shock. Conservation

of mass can be shown only in the average over several rows

of weight areas, and this requires that the states in front
and behind the shock change only little along the shock and

that the location of the shock relative to the weight areas

in the upper and in the lower rows is the same. Then the

inadequacies in the representation of the flow field, in

particular of y, cancel each other and one obtains that,

in the average, mass is conserved. This is exactly Murman's

argument.

The shock operator is, of course, compatible with a

smooth transition from a supersonic to a subsonic flow. It

is therefore applicable to shockfree flow fielas.

The fact that the shock conditions are satisfied only

in the average over several elements makes the choice of

rather small elements mandatory. At least in the stace of

the computations where a relatively good approximation has

already been found and one wants to refine this

by using elements in which the shock position is identified.

A shock is without influence on the supersonic region upstream.

The supersonic region can actually be continued downstream

beyond the shock location. (An obvious example is the bow

shock in front of a blunt body in a supersonic parallel

flow.) In the supersonic flow, the state of points which

lie in the area of influence of the data at a preceding station

x = const is independent of the boundary conditions which one

may prescribe at the upper or lower boundary of the region.

This is approximately correct, even if one applies it in an

implicit method, as is frequently done in this context.

One therefore can find the supersonic region ahead of the

shock and to some extent, its continuation downstream with
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the usual finite element formulation for supersonic flows

using fictitious boundary conditions at the upper end (this

description refers to a shock on the upper side of a profile).

Once the flow in the supersonic region ahead of the shock is

known, the complete state of the flow immediately behind the

shock depends only upon the position of the shock. For the

present discussion, we are using rectangular elements and

consider in lieu of ordinary differential equations the

difference equations corresponding to rows of weight areas

bounded by lines y = const. The shock can be described by

means of the x coordinates of its intersection with these

row boundaries. These coordinates are now considered as

unknown. In the simplest case one can approximate the shock

between the intersection points by straight lines. In this

manner one obtains one additional free parameter for each row

of weight areas. This gives exactly the number of additional

unknowns to satisfy the boundary conditions at the downstream

end of the subsonic region.

An insight into the character of the problem can be

obtained in the following manner: Assume that the shock

position is known. Then one has in the region downstream of

the shock a purely subsonic problem. A finite element

formulation will lead to a system of equations which contains

among the unknowns the potential at the shock, while the mass

flux through the shock (which is temporarily assumed to be

known) appears as a contribution to the inhomogeneous terms.

The solution to this problem would be completely determined.

Actually, the normal component to the mass flow is unknown

because the shock location is not known, but it and also the

potential can be expressed in terms of the shock abscissas.

The potential is continuous and normal component of the mass

flux are continuous through the shock. This qives two sets

of additional conditions in terms of the shock abscissas

which are considered as additional parameters in the
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description of the flow field. The procedure is best used

in the form of a Newton Raphson iteration for the whole flow

field in which one computes simultaneously the potential

in the subsonic part of the flow and corrections to the shock

location. This idea will be developed in more detail in a

report where the possibilities of a separate treatment of

the subsonic and the supersonic regions with subsequent matching

are discussed. The development sketched last applies only to

that part of the shock where the flow behind the shock is

subsonic.

The flow field in the vicinity of the junction between

the shock and the sonic line is rather complicated. The

author considers the description developed by Nocilla as

correct (Ref. 6) while he believes that the solutions of
Germain (Ref. 7) which are sometimes quoted in this context

refer to a different setting, namely the reflection of a

sonic line in the form of a shock of a singularity propagating

toward the sonic line (see the discussions in Ref. 8). These

details are probably not within the capabilities of present

flow computation methods. On the other hand, it is questionable

whether a detailed computation is worth the effort from a

practical point of view.

The determination of the flow field described here is

best carried out in the form of a Newton Raphson iteration
in which one solves the corrections to an existing approxi-

mation by direct elimination. In this context the follow-

ing observation may be of interest. Using an extremum for-

mulation and bilinear elements, the author has tried to solve

a purely subsonic problem by column relaxation similar to

that of Murman for finite difference equations. Since one

seeks the extremum of a certain functional, convergence is

guaranteed, just as it is in Murman's treatment. However,

convergence turned out to be disappointingly slow. This can
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be explained as follows. Consider the example of the Laplace

operator. In a finite difference procedure, one obtains the

following difference star

Ax- 2  -2 + Ay2 -2
0 0l 0

and for Ax = Ay

0 010
Ax- 2  1 -4

La 1 a]
In column relaxation one changes only the elements of the

middle column which then leads to a tridiagonal matrix

-4 1

1 -4 1

1 -4 1

For bilinear finite elements one obtains the following

stars

16 -1/3 1/6 [1/6 2/3 1/6
Ax3 [4/3 -1-2

x2 2/ -4/3 2/3 + Ay-1/3 -4/3 -1/3

[1/6 -1/3 1/6] L1/6 2/3 1/61

and for Ax = Ay

f1/3 1/3 1/31
Ax"2  1/3 -8/3 1/3

L13 1/3 1/3]
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For column relaxation one then deals with a matrix

F-8 1

1 -8 1

(1/3) 1 -8 1

Here one has much stronger diaaonal dominance than for finite

differences; that is, one is closer to point (over) relaxation.

This probably explains the slowness of convergence. The

situation is aqgraved if one takes Ay > Ax. Naturally, this

argument does not apply if one uses direct elimination

A question of convergence still remains but only because the

problem is nonlinear.

34



REFERENCES

1. Jameson, Antony, "Transonic Potential Flow Computations
Using Conservation Form," AIAA Conference on Computational
Fluid Dynamics, Hartford, June 1975, 148-155.

2. Murman, E. M. and J. D. Cole, "Calculations of Plane
Steady Transonic Flows," AIAA Journal 1971, 114-121.

3. Murman, E. M., "Analysis of Embedded Shock Waves Calculated
by Relaxation Methods," AIAA Conference on Computational
Fluid Dynamics, Palm Springs, July 1973.

4. Guderley, Karl G. and Donald S. Clemm, "Applicability
of the Finite Element Concept to Hyperbolic Equations,"
UDR-TR-109, University of Dayton Research Institute,
to be published as AFFDL-TR.

5. Guderley, K. G., "Heuristic Considerations Related to
the Computation of Transonic Flow Fields, Recent
Developments in Theoretical and Experimental Fluid
Mechanics, Edited by U. Mueller, K. G. Roesner, B. Schmidt,
Springer Verlay, Berlin & Heidelberg, 1979.

6. Nocilla, S., "Flussi Transonici attorno a profili alari
simmetrici con onda d'urto attacata (M < 1). Atti della
R. Accademia delle Science de Torino 9 , 1957-1958 and
93, 1958.

7. Germain, P. et Gillion, G., Ecoulements transsoniques
au voisinage d'un point de rencontre d'une onde de choc
et d'une ligne sonic, Publication Onera No. 102, Paris,
1961.

8. Guderley, K. G. and Acharya, Y. V. G., "A Reexamination
of the Junction Between the Sonic Line and a Shock in
Flows with M < l," ARL Tech Report 73-006 (May 1973),
Available through National Technical Information Services
Clearing House Springfield, VA 22151.

I

35
*U.S.Governmoflt Printing Office: 1980 - 657-084/790

-Ak.




